• Skip to primary navigation
  • Skip to content
  • Skip to footer
██████╗░███████╗██████╗░░██████╗░░██╗░░░░░░░██╗░█████╗░██╗░░░░░██████╗░
██╔══██╗██╔════╝██╔══██╗██╔════╝░░██║░░██╗░░██║██╔══██╗██║░░░░░██╔══██╗
██████╦╝█████╗░░██████╔╝██║░░██╗░░╚██╗████╗██╔╝███████║██║░░░░░██║░░██║
██╔══██╗██╔══╝░░██╔══██╗██║░░╚██╗░░████╔═████║░██╔══██║██║░░░░░██║░░██║
██████╦╝███████╗██║░░██║╚██████╔╝░░╚██╔╝░╚██╔╝░██║░░██║███████╗██████╔╝
╚═════╝░╚══════╝╚═╝░░╚═╝░╚═════╝░░░░╚═╝░░░╚═╝░░╚═╝░░╚═╝╚══════╝╚═════╝░
      Thomas | @bergwald

      Thomas | @bergwald

      Data scientist. Former student at Stockholm University. Interested in finance, mathematics, computer science, and artificial intelligence.

      • Bern, Switzerland
      • GitHub
      • Email

      Locality-sensitive Hashing with Numpy

      June 5, 2022

      Numpy implementation of the SimHash and MinHash locality sensitive hash functions.

      Direct Link

      Updated: June 5, 2022

      • GitHub
      © 2025 Bergwald